Understanding the tasks of QA over KG

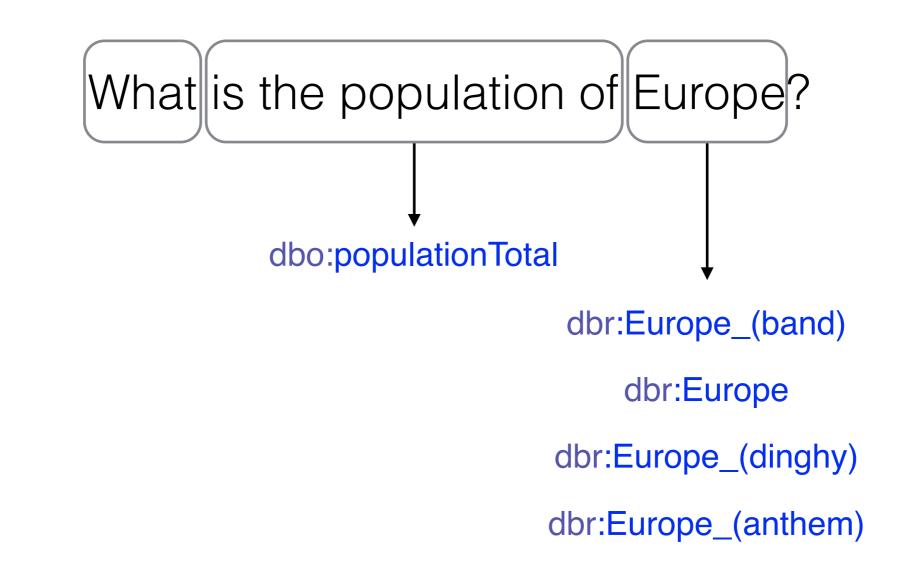
Dennis Diefenbach

The question answering process

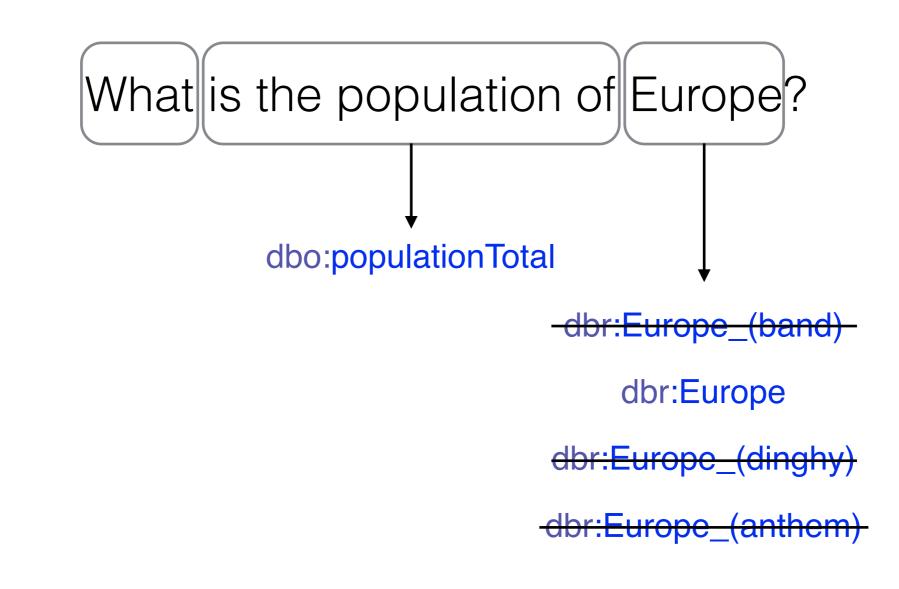
Question analysis Phrase mapping

Disambiguation

Query construction


Collect informations which can be deduced considering only the syntax of the question

- Type of the question
- NE recognition
- Identify the properties
- Identify dependencies



Mapping a phrase to possible resources in the underling ontology

Mapping a phrase to possible resources in the underling ontology

Use all informations collected in the steps before to construct a SPARQL query

What is the population of Europe?

Select * where {
 dbr:Europe dbp:populationTotal ?p
}

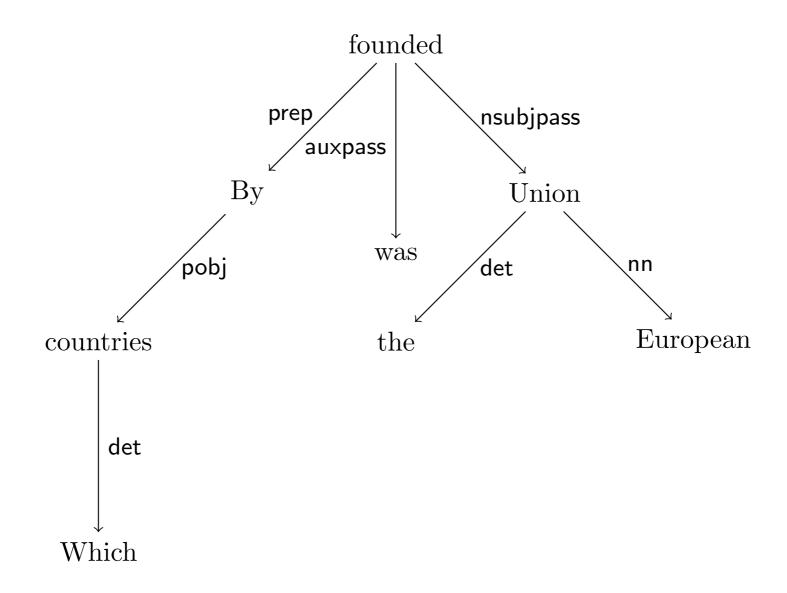
Who is the director of the Lord of the Ring?

- Use a NE recognition tool
 - Problem: Standford NER tool could recognize only 51.5% of the NE in the QALD-3 training set
- Check all n-grams
 - Who is the brother of the CEO of the BBC?


use POS Tagging

WRBVBDDTNNPNNPVBN.WhenwastheEuropeanUnionfounded?

General strategy: identify some reliable POS tags expressions


- 1. Hand made rules
- 2. Use ReVerb, based on the following regex

 $\begin{array}{l} V \mid VP \mid VW^*P \\ V = verb \ particle? \ adverb? \\ W = (noun \mid adjective \mid adverb \mid pronoun \mid determiner) \\ P = (preposition \mid particle \mid inf. \ marker) \end{array}$

use Parsers

- Parsers based on dependency grammars
 - Standford dependencies

Learn all this from embeddings

Summarizing

Works only for well formulated questions. Is highly multilingual !!!!

Attention: Which countries are in the European Union?

dbr:Greece dbp:member dbr:European_Union .

dbr:France dbp:member dbr:European_Union .

For a phrase "s" find, in the underlying KG, a set of resources which correspond to s.

General strategy

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#> PREFIX dbpedia: <http://dbpedia.org/resource/>; dbpedia:European_Union rdfs:label "European Union"@en dbpedia:European_Union rdfs:label "Europäische Union"@de dbpedia:European_Union rdfs:label "Union européenne"@fr

Problems

- Phrase "s" is only similar to the "label(r)"
 - "s" is misspelled
 - order of words in "s" is different
- Phrase "s" is only similar on a semantic point of view to "label(r)"
 - "s" is an abbreviation (e.g. EU)
 - "s" is a nickname (e.g. "Mutti" for "Angela Merkel")
 - "s" is a relational phrase (e.g. "is married with" and "spouse")

Dealing with string similarity

- use Levenstein distance, Jaccrad distance
- use a Lucene Index

Phrase

mapping

- build in ranking based on tf-idf
- allows fuzzy searches (searches terms similar to a given metric)
- hight performant
- all out of the box

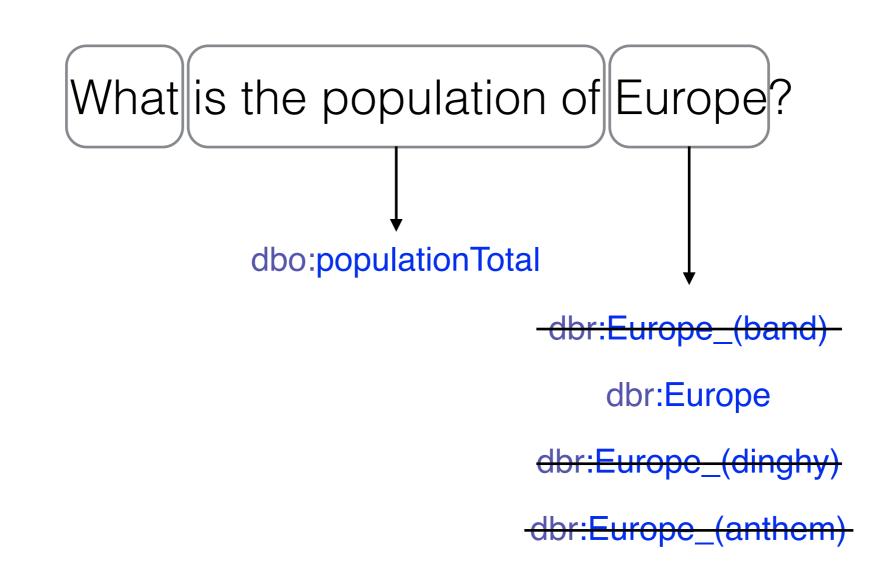
Dealing with semantic similarity

- Database with lexicalizations
 - WordNet, Wiktionary
 - Expand phrase "s" with synonyms (hypernyms/ hyponyms)

Example: EU

{European Union, European Community, EC, European Economic Community, EU, Common Market, Europe}

{europium, Eu, atomic number 63}



Dealing with semantic similarity

- Using large texts
 - wordToVec/ESA
 - Associate to each word a real n-dimensional vector
 - The vector "contains" semantic information!!!
 - ex1. vec(France) near to vec(spain), vec(belgium).
 - ex2. vec(queen) is near to vec(king)-vec(man) +vec(woman)
 - Compare how similar words are by comparing their vectors

Mostly the graph structure is used

Take all triples

?0

?p

What is the population of Europe?

dbr:Europe_(band)
dbr:Europe
dbr:Europe_(dinghy)
dbr:Europe_(anthem)

Templates

What is the population of Europe?

Benchmarks

Datasets	WebQuestions	SimpleQuestions	QALD 1 to 9
Nb of questions	5.810	108.442	50 to 250
Year of publication	2013	2015	2011 to 2018
Types of relations implied	Reified statements (97%)	Single statements (1 triple)	Up to 3 binary relations
Language	English	English	Multilingual (since 5)
KG	Freebase	Freebase	DBpedia

Benchmarks

Datasets	LC-QuAD	Convex
Nb of questions	5000	5000 dialogs
Year of publication	2017	2019
Types of relations implied	up to 3 triple patterns	?
Language	English	English
KG	DBpedia	Wikidata

Challenges

- Multilinguality
- Portability
- Scalability
- Robustness
- Multiple Knowledge Graphs
- Dialogues

Questions ?