
All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Welcome to ESWC Tutorial:
Constructing Question Answering
Systems over Knowledge Graphs
2021-06-07, online

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

2

● Short survey about prior knowledge

○ https://www.menti.com/edde7vswm2

○ Or go to menti.com and type 9383 4196

● Agenda of the tutorial

● Brief round of introductions of participants

Let’s get started

● Brief round of introductions of presenters

Most of the information are available here:

https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

https://www.menti.com/edde7vswm2
https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Keynote and introduction into the field
of Question Answering
general principles and variations
by Pierre Maret

https://docs.google.com/presentation/d/1S94
1Q4tzVJ1FZyMJH5jggX65cFKboAKrq32hvXn
5K0s/edit?usp=sharing

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de
https://docs.google.com/presentation/d/1S941Q4tzVJ1FZyMJH5jggX65cFKboAKrq32hvXn5K0s/edit?usp=sharing
https://docs.google.com/presentation/d/1S941Q4tzVJ1FZyMJH5jggX65cFKboAKrq32hvXn5K0s/edit?usp=sharing
https://docs.google.com/presentation/d/1S941Q4tzVJ1FZyMJH5jggX65cFKboAKrq32hvXn5K0s/edit?usp=sharing

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Understanding the tasks of
Question Answering (QA) over
Knowledge Graphs (KGs)
by Dennis Diefenbach

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

5

What is Question Answering over Knowledge Graphs?

6

The Question Answering Process

7

Question Analysis

8

Question Analysis

9

Phrase Mapping

10

Disambiguation

11

Query Construction

12

Question Analysis

13

Question Analysis

14

Question Analysis

15

Question Analysis

16

Phrase Mapping

17

Phrase Mapping

18

Phrase Mapping

19

Phrase Mapping

20

Phrase Mapping

21

Disambiguation

22

Query Construction

23

Query Construction

24

Query Construction

25

Challenges

• Multilinguality

• Portability

• Scalability

• Robustness

• Multiple Knowledge Graphs

• Dialogues

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Build a Question Answering system
using QAnswer and the Qanary
framework
by Dennis Diefenbach
and Andreas Both

After the coffee break ☕, continue at 11:25h

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

27

Overview

28

QAnswer: how it works?

29

QAnswer: how it works?

30

QAnswer: how it works?

31

QAnswer: how it works?

32

QAnswer: how it works?

33

QAnswer: how it works?

34

QAnswer: some technical details

35

QAnswer: some technical details

36

QAnswer: some technical details

37

QAnswer: some technical details

38

QAnswer advantages: Multilinguality

39

QAnswer advantages: Scalability

40

QAnswer advantages: Portability

41

QAnswer advantages: Robustness

42

QAnswer Evaluation: QALD

43

QAnswer Evaluation: QALD

44

QAnswer Evaluation: QALD

45

QAnswer Evaluation: QALD

46

QAnswer Evaluation: QALD

47

QAnswer Evaluation: Simple Questions

48

QAnswer Evaluation: LcQuad

49

● not everything is solvable inside of the query builder QAnswer

○ Remark: the same is true for any QA system and any QA component

→ Our challenge as scientist:

■ implement a high-quality QA system for the considered knowledge domain

● Example: adding additional functionality

○ User’s question: “Where and when was Johann Sebastian Bach born ?”

■ Possible solution: transformation into two interpretations

● When was Johann Sebastian Bach born?

● Where was Johann Sebastian Bach born?

○ Follow-up: Give me the corresponding state. → Saxe-Eisenach

 (https://www.wikidata.org/wiki/Q696651)

From QAnswer to Qanary

https://www.wikidata.org/wiki/Q1339

→ Eisenach

→ 31 March 1685 (Gregorian Calendar)

https://www.wikidata.org/wiki/Q696651
https://www.wikidata.org/wiki/Q1339

50

● Observations:
○ Implementing a QA system is cumbersome and time-consuming

→ As researchers, we would like to invest the time into novel

methods (and not into engineering)

● Vision:
○ establish an infrastructure in which the state-of-the-art QA

components can be easily integrated, run, and evaluated.

→ As researchers, we can focus on novel methods and also reuse

typical component to complete a QA system

Both, Andreas, Dennis Diefenbach, Kuldeep Singh, Saeedeh Shekarpour,

Didier Cherix, and Christoph Lange. Qanary - a methodology for
vocabulary-driven open question answering systems. In 13th Extended

Semantic Web Conference, 2016.

Motivation of the Qanary approach

https://3starlearningexperiences.wordpress.com/2018/12/24/standing-on-the-shoulders-of-giants-an-offer-you-cant-refuse/

51

● Goal of the Qanary methodology: Establish a component-oriented framework

○ Each sub-task of a QA system is considered to be a QA component

● Features:

○ Flexible w.r.t. the size and purpose of the QA components

○ Plug & play behavior of the QA components

○ Knowledge-driven approach (RDF-based information architecture)

● Your advantages:

○ Open source implementation

○ Add additional functionality

○ Reuse previously implemented components

■ https://github.com/WDAqua/Qanary-question-answering-components
■ Remark: QAnswer is an example of a Query Builder component

● https://github.com/WDAqua/Qanary-question-answering-components/tree/master/qanary_component-QBE-QAnswer

→ Make building Question Answering systems easier

Motivation Qanary Approach

https://github.com/WDAqua/Qanary

https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary-question-answering-components/tree/master/qanary_component-QBE-QAnswer
https://github.com/WDAqua/Qanary

52

● QA system to answer questions like: When and where was <Person> born ?

● Implement 3 components:

● Example: Where and when was Ada Lovelace born?

Example 1 (Wikidata KG)

Recognize person
entity in Wikidata
(NED/NER)

Create SPARQL query
using the QAnswer API

Query Wikidata using
compute SPARQL
query to fetch results

WikidataQueryExecuterOpenTapiocaNED BirthDataQueryBuilder

chatbot-like UI (demo installation)
https://webengineering.ins.hs-anhalt.de:43712/

The mentioned components
are available at:
https://github.com/WDAqua/
Qanary-question-answering-
components

https://webengineering.ins.hs-anhalt.de:43712/
https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary-question-answering-components

53

The Qanary Approach: Adding additional components to the QA system for custom functionality

"What is the real name of Batman ?"

Relation Detection

Entity Recognition

Intent Classification

Query Builder

Task: Create a Question Answering System capable of analyzing natural-language questions

...

...

...

... ...

...

...

...

...

...

Qanary triplestore

stores all relevant
data known about the

current question

Framework is managing the
interaction between the Qanary tasks
(i.e., orchestrating the microservices)

following a message-driven
architecture

Input

Output PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT * WHERE {
 dbr:Batman foaf:name ?anser .
 …
 …
}

all component analyze the given question
- fetch all available information
- store created annotations of a question

54

SELECT * WHERE {

?resource foaf:name ?answer . # real name of superhero

?resource rdfs:label ?label . # get the character name of the superhero

FILTER(LANG(?label) = "en") . # only English names

?resource dct:subject dbr:Category:Superhero_film_characters . # only superheros

FILTER(! strStarts(LCASE(?label), LCASE(?answer))). # filter starting with the same name

VALUES ?resource { dbr:Batman } . # only for this specific resource

}

Actually computed question for "What is the real name of Batman ?"

55

● QA system to answer questions like: What is the real name of <superhero character> ?

● Implement 3 components:

● Example: What is the real name of Batman?

Example 2 (DBpedia KG)

Recognize Name Entity
in DBpedia

Create SPARQL query
by a custom
component

Query DBpedia using
compute SPARQL
query to fetch results

SparqlExecuterNED-DBpediaSpotlight QueryBuilderSimple
RealNameOfSuperHero

Qanary triplestore

stores all relevant data
known about the current

question

chatbot-like UI (demo installation)
https://webengineering.ins.hs-anhalt.de:43712/

The mentioned components
are available at:
https://github.com/WDAqua/
Qanary-question-answering-
components

https://webengineering.ins.hs-anhalt.de:43712/
https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary-question-answering-components

56

● Qanary triplestore is global memory processes

○ Each request is stored into a graph of the triplestore

○ Each component stores the computed information

into the same graph

■ Vocabulary: Web Annotation Data Model

● W3C Recommandation:

https://www.w3.org/TR/annotation-model/

● Enabled quality measurement via SPARQL queries:

Quality measurement

Qanary triplestore

stores all relevant data known about a process

Annotations of
NED-DBpediaSpotlight

Annotations of
QueryBuilderSimple

RealNameOfSuperHero

Annotations of
SparqlExecuter

https://www.w3.org/TR/annotation-model/

57

● Long-term agenda:

○ Establish automatically a QA system for any domain

○ Find the best possible QA component for a given task

○ Optimize the QA quality automatically

Kuldeep Singh, Arun Sethupat Radhakrishna, Andreas Both, Saeedeh Shekarpour, Ioanna Lytra, Ricardo

Usbeck, Akhilesh Vyas, Akmal Khikmatullaev, Dharmen Punjani, Christoph Lange, Maria-Esther Vidal, Jens

Lehmann, and Sören Auer. Why reinvent the wheel: Let’s build question answering systems together. The

World Wide Web Conference, WWW 2018.

Vision: Let’s build QA systems together

58

● Qanary framework enables composition of components

○ Remark: QAnswer an example of a Query Builder component

● You can control/trace the behavior in the NLU / query construction process.

● You can combine different implementations.

● You can exchange implementations to optimize the quality.

● The Qanary ecosystem provides several tools to make your life as as QA researcher easier:

○ Easy-to-use framework

○ Plug & play of typical components

○ SPARQL access to process information

○ Options to microbenchmark components / your implementations

○ Ready-to-use chatbot-like Web user interface

Summary

https://github.com/WDAqua/Qanary

https://github.com/WDAqua/Qanary

59

● QAnswer is powerful Question Answering Query Engine

○ evaluates graph structure of KG

○ Matches entities and corresponding graph patterns

○ Fast and scalable

● Qanary provides a methodology

○ easy-to-use framework for building QA systems

○ already reusable set of QA components

○ Easy quality measurement

After the lunch break 🍴:

1. Learn to use QAnswer

2. Learn to take advantage of the Qanary ecosystem

Wrap-up

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

QAnswer: Examples & Hands on
by Dennis Diefenbach and Pierre Maret

After the lunch break 🍴

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

61

Example 1: HR

Querying a Knowledge Graph
containing information about
Employees.

62

Example 2: EU Knowledge Graph

Querying a Knowledge Graph of the European
Commission that contains data about:

- countries / capitals
- head of states
- european institutions
- buildings by the commission
- more than 700.000 projects financed by

the European Commission

63

Example 3: Product Catalogue

Querying a Knowledge Graph of products
coming from openFoodFacts 1.7 M
products with information about:

- brands and stores
- countries
- ingredients
- nutrients

64

 Hands-on session

Create our own Digital Twin using QAnswer!

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

The Question Answering Framework

A short hands-on introduction
by Andreas Both, Aleksandr
Perevalov, Paul Heinze

Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C024B8B03EC

After the coffee break ☕

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de
https://app.slack.com/client/T023597R6E4/C024B8B03EC

66

● core was developed in the Horizon 2020 ITN (2015-2018)

● available as open-source

● consists of two main perspectives

○ framework:

■ reference implementation of central components (Java, Spring Framework)

■ manifests the Qanary approach to develop a knowledge-driven Question Answering system

■ available at https://github.com/WDAqua/Qanary

○ components:

■ all of them follow the Qanary implementation concept

■ solve specific tasks (e.g., language classification, intent detection, NED, query building)

■ can be implemented using any programming language (mainly Java, Python)

■ some are available at https://github.com/WDAqua/Qanary-question-answering-components

Overview

https://github.com/WDAqua/Qanary
https://github.com/WDAqua/Qanary-question-answering-components
http://wdaqua.eu

67

The Qanary Approach: Adding additional components to the QA system for custom functionality

"What is the real name of Batman ?"

Relation Detection

Entity Recognition

Intent Classification

Query Builder

Task: Create a Question Answering System capable of analyzing natural-language questions

...

...

...

... ...

...

...

...

...

...

Qanary triplestore

stores all relevant
data known about the

current question

Framework is managing the
interaction between the Qanary tasks
(i.e., orchestrating the microservices)

following a message-driven
architecture

Input

Output PREFIX dbr: <http://dbpedia.org/resource/>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT * WHERE {
 dbr:Batman foaf:givenName ?label .
}

all component analyze the given question
- fetch all available information
- store created annotations of a question

68

Qanary approach

- exchangeable, reusable components

- real plug & play micro services

- supports microbenchmarking

- flexible orchestration

- global quality improvement / self-optimizing

- auto-wiring of Question Answering components

- knowledge-driven approach (Qanary triplestore)

- descriptive data access

- traceable information

- reasoning possible

Contributions of the ecosystem

Impact

- rapid and efficient system development

- supports agile software development

- easy to measure systems quality

- native support for AI-driven development

- flexible usage:

- can be used to develop new sub-systems and

- to develop complete Question Answering systems

Research Vision

- integrate all best-of-breed approaches

- establish domain-agnostic automatic optimization of

Question Answering quality

69

● QA system to answer questions like: What is the real name of <superhero character> ?

● Implement 3 components:

● Example: What is the real name of Batman?

Example (DBpedia KG)

Recognize Name Entity
in DBpedia

Create SPARQL query
by a custom
component

Query DBpedia using
compute SPARQL
query to fetch results

SparqlExecuterNED-DBpediaSpotlight QueryBuilderSimple
RealNameOfSuperHero

Qanary triplestore

stores all relevant data
known about the current

question

70

● Qanary framework receives question

a. question is stored in the Qanary triplestore

b. Calls 1st Qanary component: NED-DBpediaSpotlight

1. Fetch the question from the Qanary triplestore

2. Call the DBpedia Spotlight service for the given question

3. Store Named Entity annotations into the Qanary triplestore

c. Calls 2nd Qanary component: QueryBuilderSimpleRealNameOfSuperHero

1. Fetch the Named Entity annotations from the Qanary triplestore

2. Create DBpedia-related SPARQL query

3. Store SPARQL query into the Qanary triplestore

d. Calls 3rd Qanary component: SparqlExecuter

1. Fetch the SPARQL query from the Qanary triplestore

2. Fetch results of SPARQL query from the DBpedia endpoint

3. Store query results (JSON) into the Qanary triplestore

Full process: What is the real name of <superhero character> ?

Qanary triplestore

stores all relevant data
known about the current

question

code@GitHub

code@GitHub

code@GitHub

Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-NED-DBpedia-Spotlight/src/main/java/eu/wdaqua/qanary/spotlightNED/DBpediaSpotlightNED.java#L60
https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-QB-SparqlExecuter/src/main/java/eu/wdaqua/qanary/sparqlexecuter/SparqlExecuter.java#L45
https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-QB-SimpleRealNameOfSuperHero/src/main/java/eu/wdaqua/qanary/component/querybuilder/QueryBuilderSimpleRealNameOfSuperHero.java#L44
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

71

● Every component follows a 3-step process

1. Fetch required data from the Qanary triplestore using

SPARQL:

SELECT * FROM <inGraph> WHERE { … }

2. Compute new information about the current question

3. Store new information into the Qanary triplestore using

SPARQL:

INSERT { GRAPH <outGraph> {

...

}}

Generalized Process

Each component is called by the Qanary framework

via a predefined RESTful interface.

3 parameters are provided to all components:

1. endpoint

○ URI of the Qanary triplestore

2. URI inGraph

○ URI of the graph with information from the

previous components

3. URI outGraph

○ URI of the graph where the newly

computed data has to be stored

Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

72

Example: What is the real name of Batman?

1. goto:

https://webengineering.ins.hs-anhalt.de:43740/startquestionansweringwithtextquestion

2. insert the question

3. activate the 3 components and drag & drop them into the correct order:
○ NED-DBpediaSpotlight

○ QueryBuilderSimpleRealNameOfSuperHero

○ SparqlExecuter

4. click on the blue/green button

5. as a result you see the access information of the current question answering process

6. goto the Stardog studio: https://stardog.studio/

○ click “connect” and insert https://webengineering.ins.hs-anhalt.de:40159

■ use the credentials “admin” and “admin”

○ select the database “qanary”

○ insert a SPARQL query you see on the right-hand side

○ this will show you the annotations that were computed by Qanary process

7. use the SPARQL studio (see following slides) to search for other oa:Annotations

Now, you know how information are stored inside of the Qanary triplestore

Your turn (I): Implement a simple Question Answering system using pre-existing component

get the answer as JSON

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX qa: <http://www.wdaqua.eu/qa#>

SELECT *

FROM <ADD HERE THE URI SHOWN AS Qanary question analysis outgraph>

WHERE {

 ?s rdf:type qa:AnnotationOfAnswerJson.

 ?s oa:hasBody ?body.

 ?body rdf:value ?json .

}

find all annotations computed in your process

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX oa: <http://www.w3.org/ns/openannotation/core/>

PREFIX qa: <http://www.wdaqua.eu/qa#>

SELECT *

FROM <ADD HERE THE URI SHOWN AS Qanary question analysis outgraph>

WHERE {

 ?annotationId rdf:type ?type.

 ?annotationId oa:hasBody ?body.

 ?annotationId oa:hasTarget ?target.

}

https://webengineering.ins.hs-anhalt.de:43740/startquestionansweringwithtextquestion
https://stardog.studio/
https://webengineering.ins.hs-anhalt.de:40159
http://www.w3.org/ns/openannotation/core/
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.wdaqua.eu/qa#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/ns/openannotation/core/
http://www.wdaqua.eu/qa#

73

● You need to decide for yourself what programming language you would like to use.

● Suggestion to create a very easy QA system:

○ Implement a QA system computing the “date of death” for a person using the Wikipedia KG

○ Reuse the OpenTapiocaNED component

○ Reuse the WikidataQueryExecuter component

Hence, you just need to implement the Query Builder component:

Your turn (II): Implement a simple Question Answering system
 using a self-developed component

Recognize Name Entity
in DBpedia

Create SPARQL query
by a custom
component

Query DBpedia using
compute SPARQL
query to fetch results

SparqlExecuterNED-DBpediaSpotlight Implement your
component here

Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

74

● Process:
○ prepare the workspace:

■ you have three options (see following slides)

○ implement your Qanary component (prefered: in Java or Python)

■ see following slides for a description

■ you need to follow 3 steps:

1. fetch the question from the Qanary triplestore

2. create your own SPARQL query that should be used for requesting the answer from Wikidata

3. store the created annotation into the Qanary triplestore

● you might re-use the following examples as templates (they follow the described 3-step process):

○ Java:

https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-QB-SimpleRealNameOfSuperHero/src/main/java/eu/wdaqua/q

anary/component/querybuilder/QueryBuilderSimpleRealNameOfSuperHero.java#L44

○ Python:

https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-Python-QC-EAT-classifier/app/answer_type_classifier.py

● deploy/start your Qanary component and QA process
○ you need to register to the Qanary framework instance you would like to use (see the linked tutorials on the following slides)

○ open the Qanary framework URI (the one you would like to use, see following slides)

■ check if the components are available

○ goto https://webengineering.ins.hs-anhalt.de:43712/ open configuration dialog (right-upper corner)

■ add your Qanary framework endpoint

■ add your list of names of your components

Your turn (II): Implement a simple Question Answering system
 using a self-developed component

Recognize Name Entity
in DBpedia

Create SPARQL query
by a custom component

Query DBpedia using
compute SPARQL query
to fetch results

Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-QB-SimpleRealNameOfSuperHero/src/main/java/eu/wdaqua/qanary/component/querybuilder/QueryBuilderSimpleRealNameOfSuperHero.java#L44
https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-QB-SimpleRealNameOfSuperHero/src/main/java/eu/wdaqua/qanary/component/querybuilder/QueryBuilderSimpleRealNameOfSuperHero.java#L44
https://github.com/WDAqua/Qanary-question-answering-components/blob/master/qanary_component-Python-QC-EAT-classifier/app/answer_type_classifier.py
https://webengineering.ins.hs-anhalt.de:43712/
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

75

Preparation:

● a triplestore: we prepared everything for the Stardog triplestore (hence, suggest to use it)

○ https://www.stardog.com/get-started/

● the Qanary framework component

○ https://github.com/WDAqua/Qanary

● the Qanary components that you would like to reuse

○ https://github.com/WDAqua/Qanary-question-answering-components

Implement your own Qanary component:

● Implement you own Qanary component, we provide 3 easy-to-use options described on GitHub:

○ Java using Maven archetypes:

https://github.com/WDAqua/Qanary/wiki/How-do-I-implement-a-new-Qanary-component-using-Java%3F

○ Python using a prepared library:

https://github.com/WDAqua/Qanary/wiki/How-to-Implement-a-Qanary-Component-using-Python-Qanary-Helpers

○ Python using plain Flask:

https://github.com/WDAqua/Qanary/wiki/How-to-Implement-a-Qanary-Component-using-Python

Let’s build a QA system using the Qanary ecosystem
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://www.stardog.com/get-started/
https://github.com/WDAqua/Qanary
https://github.com/WDAqua/Qanary-question-answering-components
https://github.com/WDAqua/Qanary/wiki/How-do-I-implement-a-new-Qanary-component-using-Java%3F
https://github.com/WDAqua/Qanary/wiki/How-to-Implement-a-Qanary-Component-using-Python-Qanary-Helpers
https://github.com/WDAqua/Qanary/wiki/How-to-Implement-a-Qanary-Component-using-Python
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

76

three options are available to prepare your workspace:

● Option 1:

○ your PC is accessible from the Internet

○ just reuse our demo installation of the Qanary framework

● Option 2:

○ you would like to run everything on your own machine

○ Option 2.1

■ you start required components using Docker

○ Option 2.2

■ you install the required components locally

Any programming language might be used to implement Qanary components.

However, completely prepared are tools for Java and Python.

Required components to run your own Qanary system
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

77

● A Stardog triplestore is already available at http://webengineering.ins.hs-anhalt.de:40159/

○ see http://webengineering.ins.hs-anhalt.de:40159/qanary for predefined vocabularies

○ credentials: admin / admin

○ optional: SPARQL editor for Stardog: https://stardog.studio

■ sign in for free to use the cloud-based UI

● A Qanary framework component is already available at https://webengineering.ins.hs-anhalt.de:43740

○ currently available components: https://webengineering.ins.hs-anhalt.de:43740/#/applications

● A Qanary chatbot-like Web UI is already available at https://webengineering.ins.hs-anhalt.de:43712/

● A Qanary developer’s view is available at

https://webengineering.ins.hs-anhalt.de:43740/startquestionansweringwithtextquestion providing information about the current

graph where the annotations of your question are stored

● Remark: If your machine is not running on a public IP address, then your self-developed locally installed Qanary components

would not be reachable. The easiest option to overcome this issue is to use ngrok:

○ Expose your port to public: ./ngrok http PORT_NUMBER

○ Copy the public link provided by ngrok to the component’s configuration

● start your QA component

● goto you Qanary framework URI: check is your component shown and marked as running (green)

● start your QA process (see previous slides)

Option 1: Running everything using pre-installed Web services
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

http://webengineering.ins.hs-anhalt.de:40159/
http://webengineering.ins.hs-anhalt.de:40159/qanary
https://stardog.studio
https://webengineering.ins.hs-anhalt.de:43740
https://webengineering.ins.hs-anhalt.de:43740/#/applications
https://webengineering.ins.hs-anhalt.de:43712/
https://webengineering.ins.hs-anhalt.de:43740/startquestionansweringwithtextquestion
https://ngrok.com/
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

78

● You might reuse the Stardog service as described in Option 1 or you start your local

■ docker run -it -v ~/stardog-home/:/var/opt/stardog -p 5820:5820 stardog/stardog

○ you will be asked for an email address to receive a free license automatically

● The Qanary pipeline Docker image is available on Docker Hub: https://hub.docker.com/repository/docker/qanary/qanary-pipeline

■ docker pull qanary/qanary-pipeline:2.4.0

■ docker run --net host qanary/qanary-pipeline:2.4.0

○ The pipeline will be available on http://localhost:8080 (using the default configuration)

○ You can set a custom port with an environment variable

■ docker run -e SERVER_PORT=<port> --net qanary/qanary-pipeline:2.4.0

● Start and connect one or many Qanary components

○ all components are available as Docker images: https://hub.docker.com/search?q=qanary&type=image

■ docker run --net host <component>

○ Again, you can specify the port using the same approach as for the pipeline

○ If you set a custom port for the pipeline you need to tell the component

■ docker run -e SPRING_BOOT_ADMIN_URL=http://localhost:<port> --net host <component>

● implement your own Qanary component (see the description on the previous slides)

● start your QA component

● goto you Qanary framework URI: check is your component shown and marked as running (green)

● start your QA process (see previous slides)

Option 2.1: Locally run the required component using Docker
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://hub.docker.com/repository/docker/qanary/qanary-pipeline
http://localhost:8080
https://hub.docker.com/search?q=qanary&type=image
http://localhost
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

79

● You might reuse the Stardog service as described in Option 1 or Option 2.1 or you install Stardog locally from scratch:
○ https://www.stardog.com/get-started/

● the whole process is described at
https://github.com/WDAqua/Qanary/wiki/Qanary-tutorial:-How-to-build-a-trivial-Question-Answering-pipeline

● in a nutshell: You need to set up the Qanary framework
○ Requirements:

■ Java JDK 8 (or newer)
■ Maven 3.5+

○ Clone the repository at https://github.com/WDAqua/Qanary
■ git clone git@github.com:WDAqua/Qanary.git

○ Build the project with:
■ mvn clean install

○ Start the pipeline with:
■ java -jar target/qa.pipeline-2.4.0.jar

○ Build and run the Qanary components following the same approach:
https://github.com/WDAqua/Qanary-question-answering-components

● implement your Qanary component
● goto your Qanary framework URI: check is your component shown and marked as running (green)
● start your QA process (see previous slides)

Option 2.2: Running the required components locally
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://www.stardog.com/get-started/
https://github.com/WDAqua/Qanary/wiki/Qanary-tutorial:-How-to-build-a-trivial-Question-Answering-pipeline
https://github.com/WDAqua/Qanary
https://github.com/WDAqua/Qanary-question-answering-components
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

80

● how a Linked Data driven Question Answering framework works
● implemented a simple QA component

○ many pre-implemented components are available. They all follow the same process:
https://github.com/WDAqua/Qanary-question-answering-components

● your next steps might be:
○ easy: implement some more components
○ easy: replace the rule-based approach of your QA component by an ML-based implementation
○ medium: add additional functionality to the Qanary framework

■ for example, dialogue management for a chatbot behavior
○ advanced: optimize your Question Answering system while integrating additional components (for

example, several NED components)
○ advanced: optimize your complete QA system by analyzing the data stored in the Qanary triplestore

and determine optimized combinations of your QA components
■ thereafter, implement new components improving the quality

You have learned
Please use the Slack channel to ask questions:
https://app.slack.com/client/T023597R6E4/C02
4B8B03EC

https://github.com/WDAqua/Qanary-question-answering-components
https://app.slack.com/client/T023597R6E4/C024B8B03EC
https://app.slack.com/client/T023597R6E4/C024B8B03EC

81

● 2014 – Both, Andreas, Viet Nguyen, Mandy Keck, Dietrich Kammer, Rainer Groh, and Dana Henkens. Get inspired: A visual divide and

conquer approach for motive-based search scenarios. In 13th International Conference WWW/INTERNET (ICWI). Received Best Paper

Award. → long version (journal)

● 2014 – Usbeck, R., Ngomo, A. C. N., Röder, M., Gerber, D., Coelho, S. A., Auer, S., & Both, A. AGDISTIS-graph-based disambiguation of

named entities using linked data. In International semantic web conference. ISWC 2014. Springer, Cham. Received Best Research Paper

Award

● 2016 – Both, Andreas, Dennis Diefenbach, Kuldeep Singh, Saeedeh Shekarpour, Didier Cherix, and Christoph Lange. Qanary - a

methodology for vocabulary-driven open question answering systems. In 13th Extended Semantic Web Conference, 2016.

● 2018 – Kuldeep Singh, Arun Sethupat Radhakrishna, Andreas Both, Saeedeh Shekarpour, Ioanna Lytra, Ricardo Usbeck, Akhilesh Vyas,

Akmal Khikmatullaev, Dharmen Punjani, Christoph Lange, Maria-Esther Vidal, Jens Lehmann, and Sören Auer. Why reinvent the wheel:

Let’s build question answering systems together. The World Wide Web Conference, WWW 2018.

● 2019 – Diefenbach, D., Migliatti, P. H., Qawasmeh, O., Lully, V., Singh, K., & Maret, P. QAnswer: a question answering prototype bridging

the gap between a considerable part of the LOD cloud and end-users. In The World Wide Web Conference, WWW 2019.

● 2020 – Diefenbach, D., Both, A., Singh, K., & Maret, P. Towards a question answering system over the semantic web. Semantic Web

Journal, iOS Press.

● 2020 – Perevalov, A, Both, A. (2020) Augmentation-based Answer Type Classification of the SMART dataset, SeMantic AnsweR Type

prediction task (SMART) at ISWC 2020 Semantic Web Challenge.

References

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Wrap-up of our tutorial

Thanks for your participation.

You have learned:

● how to configure and use the QAnswer Query Builder

● how to use the Qanary methodology to build a QA system

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

83

Open Discussion

All information will be available at https://qanswer.github.io/QA-ESWC2021/

Dennis Diefenbach
QA Company
dennis.diefenbach@the-qa-company.com

Pierre Maret
Université Jean Monnet
pierre.maret@univ-st-etienne.fr

Andreas Both
Anhalt University of Applied Sciences
andreas.both@hs-anhalt.de

Aleksandr Perevalov
Anhalt University of Applied Sciences
aleksandr.perevalov@hs-anhalt.de

Paul Heinze
Anhalt University of Applied Sciences
paul.heinze@student.hs-anhalt.de

Last words

https://qanswer.github.io/QA-ESWC2021/
mailto:dennis.diefenbach@the-qa-company.com
mailto:pierre.maret@univ-st-etienne.fr
mailto:andreas.both@hs-anhalt.de
mailto:aleksandr.perevalov@hs-anhalt.de
mailto:paul.heinze@student.hs-anhalt.de

